SUBMITTAL RECORD
JOB
LOCATION
SUBMITTED TO
SUBMITTAL PREPARED BY
APPROVED BY
DATE

Submittal Form Double Sided Black Foam Tape

DESCRIPTION

Wherever flanges are used in connecting parts of a duct system, the potential for air leakage exists. Besides contributing to energy waste, leaks can also create noise. Sealing of ductwork can be accomplished with the use of foam tape which adheres to flanged surfaces. When this material is attached to a flange which is then assembled to a second flange, the material is compressed and fills gaps and irregularities creating a seal.

BF2S18 is a 1/8" thick black closed cell, crosslinked polyethylene foam coated on both sides with a high performance acrylic based adhesive with a white kraft liner. Typical applications: circular duct connectors and rectangular duct connectors

FEATURES

- Easily die cut
- Low application temperature
- Great chemical resistance
- · Low compression set
- Best conformability, cushioning, & vibration dampening

TYPICAL PROPERTIES

Peel Adhesion: 28 oz/in*

Color: Black
Tack: 21 oz***

Tensile Strength: 240 oz/in

Temperature Use: 10°F to 176°F** (203°F intermittent)

DOUBLE SIDED BLACK FOAM TAPE			
ITEM#	CODE	DESCRIPTION	LENGTH
7197	BF2S18-100	1/8" x 1"	108'/CTN
7199	BF2S18-112	1/8" x 1-1/2"	108'/CTN

SUGGESTED SPECIFICATIONS

All flanged joints shall be sealed with tape coded as supplied by Duro Dyne Corporation.

RELATED SMACNA RECOMMENDATIONS*

1.4.1 - Duct Sealing

Ducts must be sufficiently airtight to ensure economical and quiet performance of the system. It must be recognized that airtightness in ducts cannot, and need not, be absolute (as it must be in a water piping system). Codes normally require that ducts be reasonably airtight. Concerns for energy conservation, humidity control, space temperature control, room air movement, ventilation, maintenance, etc., necessitate regulating leakage by prescriptive measures in construction standards. Leakage is largely a function of static pressure and the amount of leakage in a system is significantly related to system size. Adequate airtightness can normally be ensured by a) selecting a static pressure, construction class suitable for the operating condition, and b) sealing the ductwork properly.

The designer is responsible for determining the pressure class or classes required for duct construction and for evaluating the amount of sealing necessary to achieve system performance objectives. It is recommended that all duct constructed for the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class meet Seal Class C. However, because designers sometimes deem leakage in unsealed ducts not to have adverse effects, the sealing of all ducts in the 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class is not required by this construction manual. Designers occasionally exempt the following from sealing requirements: small systems, residential occupancies, ducts located directly in the zones they serve, ducts that have short runs from volume control boxes to diffusers, certain return air ceiling plenum applications, etc. When Seal Class C is to apply to all 1 in. (250 Pa) and 1/2 in. (125 Pa) pressure class duct, the designer must require this in the project specification. The designer should review the HVAC Air Duct Leakage Test Manual for estimated and practical leakage allowances.

Seven pressure classes exist [1/2 in. (125 Pa), 1 in. (250 Pa), 2 in. (500 Pa), 3 in. (750 Pa), 4 in. (1000 Pa), 6 in. (1500 Pa), and 10 in. wg (2500 Pa)]. If the designer does not designate pressure class for duct construction on the contract drawings, the basis of compliance with the SMACNA *HVAC Duct Construction Standards* is as follows: 2 in. wg (500 Pa) for all ducts between the supply fan and variable volume control boxes and 1 in. wg (250 Pa) for all other ducts of any application.

Some sealants can adversely affect the release function of breakaway connections to fire dampers; consult the damper manufacturer for installation restrictions.

Table 1-1 Standard Duct Sealing Requirements				
Seal Class	Sealing Requirements	Applicable Static Pressure Construction Class		
A	Class A: All Transverse joints, longitudinal seams, and duct wall penetrations	4 in. wg and up (1000 Pa)		
В	Class B: All Transverse joints and longitudinal seams only	3 in. wg (750 Pa)		
С	Class C: Transverse joints only	2 in. wg (500 Pa)		

In addition to the above, any variable air volume systems duct of 1 in. (250 Pa) and 1/2 in. wg (125 Pa) construction class that is upstream of the VAV boxes shall meet Seal Class C

*From SMACNA HVAC Duct Construction Standards Metal and Flexible • Third Edition • 2005

^{*}Foam destruction

^{**}The pressure sensitive adhesive used in this tape construction will perform at higher than the listed temperatures. The temperature limits are due to the polyolefin foam substrate.

^{***} Tack numbers may not be exact value of tack as foam can tear during tack test.